3k^2+72=32k

Simple and best practice solution for 3k^2+72=32k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3k^2+72=32k equation:


Simplifying
3k2 + 72 = 32k

Reorder the terms:
72 + 3k2 = 32k

Solving
72 + 3k2 = 32k

Solving for variable 'k'.

Reorder the terms:
72 + -32k + 3k2 = 32k + -32k

Combine like terms: 32k + -32k = 0
72 + -32k + 3k2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
24 + -10.66666667k + k2 = 0

Move the constant term to the right:

Add '-24' to each side of the equation.
24 + -10.66666667k + -24 + k2 = 0 + -24

Reorder the terms:
24 + -24 + -10.66666667k + k2 = 0 + -24

Combine like terms: 24 + -24 = 0
0 + -10.66666667k + k2 = 0 + -24
-10.66666667k + k2 = 0 + -24

Combine like terms: 0 + -24 = -24
-10.66666667k + k2 = -24

The k term is -10.66666667k.  Take half its coefficient (-5.333333335).
Square it (28.44444446) and add it to both sides.

Add '28.44444446' to each side of the equation.
-10.66666667k + 28.44444446 + k2 = -24 + 28.44444446

Reorder the terms:
28.44444446 + -10.66666667k + k2 = -24 + 28.44444446

Combine like terms: -24 + 28.44444446 = 4.44444446
28.44444446 + -10.66666667k + k2 = 4.44444446

Factor a perfect square on the left side:
(k + -5.333333335)(k + -5.333333335) = 4.44444446

Calculate the square root of the right side: 2.10818511

Break this problem into two subproblems by setting 
(k + -5.333333335) equal to 2.10818511 and -2.10818511.

Subproblem 1

k + -5.333333335 = 2.10818511 Simplifying k + -5.333333335 = 2.10818511 Reorder the terms: -5.333333335 + k = 2.10818511 Solving -5.333333335 + k = 2.10818511 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '5.333333335' to each side of the equation. -5.333333335 + 5.333333335 + k = 2.10818511 + 5.333333335 Combine like terms: -5.333333335 + 5.333333335 = 0.000000000 0.000000000 + k = 2.10818511 + 5.333333335 k = 2.10818511 + 5.333333335 Combine like terms: 2.10818511 + 5.333333335 = 7.441518445 k = 7.441518445 Simplifying k = 7.441518445

Subproblem 2

k + -5.333333335 = -2.10818511 Simplifying k + -5.333333335 = -2.10818511 Reorder the terms: -5.333333335 + k = -2.10818511 Solving -5.333333335 + k = -2.10818511 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '5.333333335' to each side of the equation. -5.333333335 + 5.333333335 + k = -2.10818511 + 5.333333335 Combine like terms: -5.333333335 + 5.333333335 = 0.000000000 0.000000000 + k = -2.10818511 + 5.333333335 k = -2.10818511 + 5.333333335 Combine like terms: -2.10818511 + 5.333333335 = 3.225148225 k = 3.225148225 Simplifying k = 3.225148225

Solution

The solution to the problem is based on the solutions from the subproblems. k = {7.441518445, 3.225148225}

See similar equations:

| 10x+4=14x | | -50=-18-2x | | 4y+5=17 | | 2x+13-x+13=4 | | 2x^8=17 | | x/6=-3 | | 1x/12+4=-17 | | 25m^2-1=0 | | 2x^2-3x+1= | | 12x=-48 | | X^2-18x+81=7 | | 4x^2-8x-90=0 | | 1x/12+4=17 | | 26=-6y+6+2y | | 5x^2-24x-5= | | 5x^2+60x=-70 | | 3x^2+2x-1= | | 2x^2+8=23 | | 12t-1(7-3t)=-8t-30 | | 4(s+22)=4(s+12) | | x^3+(2x^2)+(4x)+2=0 | | 8x+5y=5x+2y | | x^3+2x^2+4x+2=0 | | 8f=56 | | 2y^2-14y+12=0 | | 2x+4=-3x+7 | | 2j-5=k | | 5x^2+13x+6= | | 8x-7=33 | | -10+3(x)=26 | | 9x+2=5x+3 | | 9x-4=50 |

Equations solver categories